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Abstract. We consider the problem of searching for a best LAD-solution of an overdetermined system
of linear equations Xa = z, X ∈ Rm×n, m ≥ n, a ∈ Rn, z ∈ Rm. This problem is equivalent to
the problem of determining a best LAD-hyperplane x 7→ aTx, x ∈ Rn on the basis of given data
(xi, zi), xi = (x(i)

1 , . . . , x
(i)
n )T ∈ Rn, zi ∈ R, i = 1, . . . ,m, whereby the minimizing functional is of the

form

F (a) = ‖z−Xa‖1 =
m∑
i=1

|zi − aTxi|.

An iterative procedure is constructed as a sequence of weighted median problems, which gives the solution
in finitely many steps. A criterion of optimality follows from the fact that the minimizing functional F
is convex, and therefore the point a∗ ∈ Rn is the point of a global minimum of the functional F if and
only if 0 ∈ ∂F (a∗).

Motivation for the construction of the algorithm was found in a geometrically visible algorithm for
determining a best LAD-plane (x, y) 7→ αx+βy, passing through the origin of the coordinate system, on
the basis of the data (xi, yi, zi), i = 1, . . . ,m.

Key words: LAD; least absolute deviations; overdetermined system of linear equations; l1-norm
approximation; weighted median problem; outliers; LAD-hyperplane
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1 Introduction

We consider the problem of searching for a best Least Absolute Deviations (LAD) solution of an overde-
termined system of linear equations (see e. g. [1, 2, 3, 4, 5, 6, 7, 8]):

Let Xa = z, where X ∈ Rm×n, m ≥ n, is a matrix of full column rank, a ∈ Rn, z ∈ Rm, and

F (a) = ‖z−Xa‖1 =
∑
i∈I
|ri(a)|, ri(a) = zi − aTxi, (1)
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§I. Vazler, Department of Mathematics, University of Osijek, Croatia, e-mail: ivazler@mathos.hr
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where I = {1, . . . ,m}, and xTi is the i-th row of the matrix X. Functional F is convex and it
attains its global minimum a∗ ∈ Rn. This point is called a LAD-solution of an overdetermined
system of linear equations Xa = z.

The same problem can be considered as the problem of estimation of optimal parameters of a best
LAD-hyperplane x 7→ aTx, x ∈ Rn, on the basis of the given set of experimental data (xi, zi), xi =
(x(i)

1 , . . . , x
(i)
n )T ∈ Rn, zi ∈ R, i = 1, . . . ,m (see e. g. [9, 10, 11, 12, 13]). In statistical literature this

problem is also considered as the problem of estimating LAD-optimal parameters of linear regression (see
e. g. [14, 15, 16]).

Example 1.1. Let us consider the simplest case as an illustration: the system Xα = z, X ∈ Rm×1,
z ∈ Rm.

Searching for a best LAD-solution of this system can be considered as a problem of searching for a
best LAD-line z = αx, whose graph passes through the origin of the coordinate system, on the basis of
the given set of data points Λ = {Ti = (xi, zi) : i ∈ I}, I = {1, . . . ,m}, m ≥ 1 (see Fig. 1). With the
notation I ′ = {i ∈ I : xi = 0}, our problem is reduced to the minimization problem

min
α∈R

∑
i∈I
|zi − αxi| =

∑
i∈I′

|zi|+ min
α∈R

∑
i∈I\I′

|xi|
∣∣∣∣ zixi − α

∣∣∣∣ , (2)

known in literature as the Weighted Median Problem (see e.g. [5, 17, 18, 19]). The following lemma ([18])
gives properties and a solution of the weighted median problem.

Lemma 1.1. Let (wi, yi), i ∈ I = {1, . . . ,m}, m ≥ 2, be the data, where y1 ≤ y2 ≤ . . . ≤ ym are real
numbers and wi > 0 corresponding data weights. Denote

J = {ν ∈ I : 2
ν∑
i=1

wi −
m∑
i=1

wi ≤ 0}.

For J 6= ∅, let us denote ν0 = max J . Furthermore, let ϕ : R→ R be a function defined by the formula

ϕ(α) =
m∑
i=1

wi|yi − α|.

Then

(i) if J = ∅ (i. e. 2w1 >
∑m
i=1 wi), then the minimum of function ϕ is attained at the point α? = y1.

(ii) if J 6= ∅ and 2
∑ν0
i=1 wi <

∑m
i=1 wi, then the minimum of function ϕ is attained at the point

α? = yν0+1.

(iii) if J 6= ∅ and 2
∑ν0
i=1 wi =

∑m
i=1 wi, then the minimum of function ϕ is attained at every point α?

from the segment [yν0 , yν0+1].

By using Lemma1.1 we can carry out a simple analysis of our problem (2):

• if I ′ = I, then X = (0, . . . , 0)T , rank (X) = 0, and each line z = αx, α ∈ R is a solution of problem
(2) (see Fig. 1.a);
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• if I ′ = ∅, whereby x1 = · · · = xm 6= 0, then X = (x1, . . . , x1)T , rank (X) = 1. Then (2) becomes
(see Fig. 1.b)

min
α∈R

∑
i∈I
|zi − αxi| = |x1|min

α∈R

∑
i∈I
| zi
x1
− α|,

and α∗ = med
i∈I

( zix1
) = 1

x1
med
i∈I

zi is a solution of problem (2);

• if I \ I ′ 6= ∅, whereby 0 < x1 < xm, then X = (x1, . . . , xm)T , rank (X) = 1. In this case the solution
of problem (2) is α∗ = med

i∈I\I′

(
|xi|, zixi

)
(see Fig. 1.c).
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Figure 1: Best LAD-line passing through the origin

The best LAD-solution of an overdetermined system of linear equations is important in various fields
of applied research, especially in the case if among the data a substantial amount of outliers (i.e. wild
points) might appear (see e. g. [14, 20, 21, 5, 22, 23]).

This principle is considered to have been proposed by the Croatian mathematician J.R.Bošković in
the mid-eighteenth century (see e. g. [14, 24]). The best LAD-solution has a property that it is less
sensitive to extreme errors (outliers), it appears among the data, and points out the influence of the
majority of data reflecting the real nature of the problem (see e. g. [24, 20, 17]).

Classical nondifferentiable minimization methods cannot be applied directly to searching the best
LAD-solution since unreasonably long computing time would be necessary or we obtain a bad approxi-
mation of the solution. That is the reason why various specialized algorithms for solving this problem
have been developed lately (see e. g. [2, 20, 15, 25, 10, 5, 26, 6, 8]).

2 The System m× 2 and the Plane (x, y) 7→ αx+ βy

Searching for a best LAD-solution of the system

Xa = z, X =

 x1 y1
...

...
xm ym

 , z =

 z1
...
zm

 , a =
[
α
β

]
, (3)

can be considered as a problem of searching for a best LAD-plane

z(x, y) = αx+ βy, (4)

whose graph passes through the origin of the coordinate system, on the basis of the given data points

Λ = {Ti = (xi, yi, zi) ∈ R3 : i ∈ I}, I = {1, . . . ,m}, m ≥ 2.
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In both cases the problem is reduced to minimizing the functional F : R2 → R,

F (α, β) =
m∑
i=1

|zi − αxi − βyi|, (5)

which always attains its global minimum at R2. Solving this problem can be geometrically clearly
represented creating in that way sound assumptions for solving a general problem. Searching for the
aforementioned best LAD-plane is a generalization of the approach cited in [18], and a special case of the
approach given in [10].

Let us introduce the following notations:

• L = {Pi = (xi, yi) ∈ R2 : i ∈ I} — projection of the set Λ on the (x, y)-plane;

• M(O, Tµ) — the plane containing a z-axis passing through the origin O and the point Tµ ∈ Λ, i.e.

M(O, Tµ) = {(x, y, z) ∈ R3 :
∣∣∣∣ xµ yµ
x y

∣∣∣∣ = 0}. (6)

Note that the point T = (x, y, z) lies on the plane M(O, Tµ) if and only if vectors (x, y)T and
(xµ, yµ)T are linearly dependent or if the point P = (x, y) lies on the line determined by the points
O and Pµ ∈ L;

• Iµ = {i ∈ I : Ti ∈ M(O, Tµ)} — the set of indices of those points from Λ lying on the plane
M(O, Tµ). Note that i ∈ I \ Iµ if and only if the point Ti ∈ Λ does not lie on the plane M(O, Tµ),
i.e. if the corresponding point Pi ∈ L does not lie on the line determined by the points O and Pµ.
On the other hand, in this case the i-th row of the matrix X in (3) is linearly independent of its
µ-th row.

Lemma 2.1. Let I = {1, . . . ,m}, m ≥ 2, be a set of indices and let

(i) Λ = {Ti = (xi, yi, zi) : i ∈ I} be a set of points in space such that its projection L on the (x, y)-plane
does not lie on some line passing through the origin;

(ii) Tµ = (xµ, yµ, zµ) ∈ Λ, such that (xµ, yµ) 6= (0, 0) and Iµ = {i ∈ I : Ti ∈M(O, Tµ)}.

Then there exists ν ∈ I \ Iµ, such that a best LAD-plane of the form (4), containing points O and Tµ,
also passes through the point Tν ∈ Λ \M(O, Tµ).

Proof. The plane of the form (4) passing through the origin O and the point Tµ = (xµ, yµ, xµ) can be
written in the form

z′ =
x

xµ
(zµ − β′yµ) + β′y, xµ 6= 0 or z′′ = α′′x+

y

yµ
(zµ − α′′xµ), yµ 6= 0, (7)

whereby the parameter β′ (i.e. parameter α′′) can be found by minimizing the functional

β′ 7→
∑
i∈I\Iµ

|zixµ − xizµ − β′ (yixµ − xiyµ)| , xµ 6= 0, (8)

i.e. by minimizing the functional

α′′ 7→
∑
i∈I\Iµ

|yizµ − ziyµ − α′′ (yixµ − xiyµ)| , yµ 6= 0. (9)
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Due to condition (i), the set I \ Iµ = {i ∈ I : Ti 6∈M(O, Tµ)} 6= ∅ and the parameter β′, i. e. α′′, can be
determined as a weighted median by minimizing functional (8), i.e. by minimizing functional (9). By the

notation wi =
∣∣∣∣ xµ yµ
xi yi

∣∣∣∣, there exists ν′ ∈ I \ Iµ such that

β′ = med
i∈I\Iµ

(
|wi|,

1
wi

∣∣∣∣ xµ zµ
xi zi

∣∣∣∣) =
1
wν′

∣∣∣∣ xµ zµ
xν′ zν′

∣∣∣∣ , α′ =
1
xµ

(zµ − yµβ′), xµ 6= 0, (10)

i.e. there exists ν′′ ∈ I \ Iµ such that

α′′ = med
i∈I\Iµ

(
|wi|,

1
wi

∣∣∣∣ zµ yµ
zi yi

∣∣∣∣) =
1
wν′′

∣∣∣∣ zµ yµ
zν′′ yν′′

∣∣∣∣ , β′′ =
1
yµ

(zµ − xµα′′), yµ 6= 0. (11)

Remark 2.1. Note that (α′, β′), i.e. (α′′, β′′), is a solution of the system[
xµ yµ
xν′ yν′

] [
α
β

]
=
[
zµ
zν′

]
, i.e.

[
xµ yµ
xν′′ yν′′

] [
α
β

]
=
[
zµ
zν′′

]
, (12)

whereby corresponding matrices are nonsingular.

Lemma 2.2. By assumptions as in Lemma2.1 there holds:

(i) If xµ = 0, i.e. yµ = 0, then a best LAD-plane from Lemma2.1, passing through the point Tµ, is of
the form z′′ = α′′x+ zµ

yµ
y, i.e of the form z′ = zµ

xµ
x+ β′y;

(ii) If (xµ, yµ) 6= (0, 0), best LAD-planes z′, z′′ of the form (7) correspond.

Proof. Assertion (i) is evident. For the purpose of proving assertion (ii) it suffices to show that α′ = β′

and α′′ = β′′. By using the following property of the median (see e. g. [17])

med
i

(pi, cui + v) = cmed
i

(pi, ui) + v, ui, c, v ∈ R, pi > 0, (13)

we have
α′ = zµ

xµ
− yµ

xµ
β′ = zµ

xµ
− yµ

xµ
med
i∈I\Iµ

(
|wi|, 1

wi

∣∣∣∣ xµ zµ
xi zi

∣∣∣∣)
= med

i∈I\Iµ

(
|wi|, zµxµ −

yµ
xµ

1
wi

∣∣∣∣ xµ zµ
xi zi

∣∣∣∣)
= med

i∈I\Iµ

(
|wi|, 1

wi

∣∣∣∣ zµ yµ
zi yi

∣∣∣∣) = α′′.

Similarly, it can be shown that β′ = β′′ holds.

2.1 Searching for a Best LAD-plane

In accordance with Lemma2.1 we construct an algorithm that will search for a best LAD-plane passing
through the origin on the basis of the given data points. First, the first point Tµ must be selected in the
algorithm such that (xµ, yµ) 6= (0, 0). After that, according to Lemma2.1, we determine the next point
Tν ∈ Λ \ {Tµ}.

Next, and again according to Lemma2.1, by the point Tν we determine the following point Tk ∈
Λ \ {Tν}. If Tk = Tµ, the procedure is finished; otherwise we repeat the procedure. Such stopping
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criterion of the iterative procedure can be seen for example in [9, 10]. However, if there exist more indices
from the set I \ Iν on which the weighted median is attained, i.e. if the plane passing through points
Tµ and Tν also contains some other points, e.g. point Tν′ , the algorithm should continue with points Tµ
and Tν′ . Only after all points lying on the aforementioned plane have been used the algorithm can be
stopped. Such situation cannot take place if the data have the property that no three points lie on the
plane passing through the origin, i.e. if the augmented matrix [X; z] satisfies the Haar condition (see e. g.
[20]). By means of geometrical analysis in Section 2.3 and by illustrative examples in Section 4 we will
illustrate all cases that might occur.

Algorithm I.1

Step 1: Input the set of points Λ = {Ti = (xi, yi, zi) : i ∈ I}, I = {1, . . . ,m} and check condition (i) from
Lemma2.1. Choose the point Tµ(xµ, yµ, zµ) ∈ Λ such that (xµ, yµ) 6= (0, 0) and set ν = µ, γ = 0;

Step 2: If γ = ν, STOP;

Else set γ = µ, µ = ν and define the set I \ Iµ and the numbers wi in the following way:

i ∈ I \ Iµ ⇐⇒ wi =
∣∣∣∣ xµ yµ
xi yi

∣∣∣∣ 6= 0,

Step 3: If yµ 6= 0, determine

α̂ = med
i∈I\Iµ

(
|wi|, 1

wi

∣∣∣∣ zµ yµ
zi yi

∣∣∣∣) ; β̂ = zµ
yµ
− xµ

yµ
α̂; (14)

Else determine
β̂ = med

i∈I\Iµ

(
|wi|, 1

wi

∣∣∣∣ xµ zµ
xi zi

∣∣∣∣) ; α̂ = zµ
xµ
− yµ

xµ
β̂, (15)

by which ν ∈ I \ Iµ is determined for which the median in (14), i.e. (15), is attained and go to
Step 2.

Remark 2.2. Note that (α̂, β̂)T in some step of Algorithm I is a solution of the system (see also Remark 2.1)

Ba =
[
zµ
zν

]
, B =

[
xµ yµ
xν yν

]
, a =

[
α
β

]
(16)

and the corresponding plane passes through the points Tµ, Tν ∈ Λ. Since ν ∈ I \ Iµ, the matrix B is
nonsingular, so that the solution of system (16) is unique.

The following theorem shows how a sequence of approximations a0,a1,a2, . . . from Algorithm I can be
successively defined as an iterative process of the form

ā = a + ϑp, (17)

where p ∈ R2 is the direction vector and ϑ ∈ R step length. Thereby if the parameter vector a in
Lemma2.1 is defined by the points Tµ, Tν , then a new-better parameter vector ā can be determined
according to Lemma2.1 only if we start from the point Tν (drop the point Tµ). The following theorem

1All evaluations and illustrations were done using Mathematica 6 on a PC (CPU: 2.00 GHz Intel Core 2 Duo processor,
Memory: 1.99 GB DDR2) on the basis of our own software available at http://www.mathos.hr/∼scitowsk/Algorithms.nb
and http://www.mathos.hr/∼scitowsk/Algorithms.m
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shows that in iterative process (17) this corresponds to the choice of the first column of the matrix B−1

as a direction vector p.
If we dropped the point Tν , i.e. if we started from the point Tµ, then according to Lemma2.1 we

would again obtain the point Tν , and it means that in the iterative process the parameter vector a will
not be changed. The following theorem shows that in iterative process (17) this corresponds to the choice
of the second column of the matrix B−1 as a direction vector p.

Theorem 2.1. Let I = {1, . . . ,m}, m ≥ 2, be the set of indices and let

(i) Λ = {Ti = (xi, yi, zi) : i ∈ I} be a set of points in space such that its projection L on the (x, y)-plane
does not lie on any line passing through the origin;

(ii) Tµ and Tν be the first and the second point obtained by Algorithm I, respectively, and B−1 =
1

xµyν−xνyµ

[
yν −yµ
−xν xµ

]
=: [d1,d2].

Then, if a = (α, β)T is the solution of system (16) for which a global minimum of the functional F given
by (5) is not attained, then

I. Decreasing of functional values (5) can be attained by applying iterative process (17) in direction
d1 of the first column of the matrix B−1, i.e. the next-better approximation obtained in Algorithm I
can be written as

ā = a + ϑ∗1d1, d1 =
1

xµyν − xνyµ

[
yν
−xν

]
, ϑ∗1 = med

i∈I\I1

(∣∣dT1 ξi
∣∣ , zi − aT ξi

dT1 ξi

)
, (18)

where ξi = (xi, yi)T and I1 = {i ∈ I : dT1 ξi = 0}.

II. By choosing the second column d2 = 1
xµyν−xνyµ (−yµ, xµ)T of the matrix B−1 as a direction vec-

tor in iterative process (17) decreasing of values of the minimizing functional (5) will not be
achieved, i.e. the step length in this direction is ϑ∗2 = med

i∈I\I2

(∣∣dT2 ξi
∣∣ , zi−aT ξi

dT2 ξi

)
= 0, whereby

I2 =
{
i ∈ I : dT2 ξi = 0

}
.

Proof. I. By using the aforementioned property of median (13), in direction d1 we have

α+ ϑ∗1
yν

xµyν − xνyµ
= med

i∈I\I1

(∣∣dT1 ξi
∣∣ , yν zi − αxi − βyi

yνxi − xνyi
+ α

)

= med
i∈I\I1

(∣∣dT1 ξi
∣∣ , yνzi − yi(αxν + βyν)

yνxi − xνyi

)

= med
i∈I\I1

(∣∣dT1 ξi
∣∣ , yνzi − yizν
yνxi − xνyi

)
,

that according to Lemma2.1 corresponds to the optimal value α′′ of the parameter α if we start from the
point Tν . Similarly, it can be shown that β + ϑ∗1

−xν
xµyν−xνyµ corresponds to the optimal value β′′ of the

parameter β if we start from the point Tν .
II. In direction d2 of the second column of the matrix B−1 with step length ϑ∗2 we obtain

α+ ϑ∗2
−yµ

xµyν−xνyµ = med
i∈I\I2

(∣∣dT2 ξi
∣∣ ,−yµ zi−αxi−βyi−yµxi+xµyi + α

)
= med

i∈I\I2

(∣∣dT2 ξi
∣∣ , −yµzi+yi(αxµ+βyµ)

−yµxi+xµyi

)
= med

i∈I\I2

(∣∣dT2 ξi
∣∣ , −yµzi+yizµ−yµxi+xµyi

)
= α.
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Similarly, we obtain β + ϑ∗2
xµ

xµyν−xνyµ = β.

Remark 2.3. Note that direction vector d1 and direction vector d2 are perpendicular to the radius vector
ξν = (xν , yν)T of the point Tν and the radius vector ξµ = (xµ, yµ)T of the point Tµ, respectively, i.e.

dT1 ξν = 0, dT2 ξµ = 0.

Note also that it is not necessary to take into account both directions d1 and (−d1) because according
to (13) the following holds: ϑ∗i (−di) = −ϑ∗i (di), i = 1, 2.

2.2 Searching for a Best LAD-solution of a System of Equations

On the basis of Algorithm I we construct a more general algorithm for searching for a best LAD-solution
of system (3). Note that condition (i) from Theorem2.1 is equivalent to the condition that the matrix X

from (3) is of full column rank.
First, we choose two linearly independent rows of the matrix X, by means of which we define a square

nonsingular matrix B, calculate B−1 =: [d1,d2] and define the initial approximation a0 of the solution.
If the step length ϑ∗1 in direction d1 and the step length ϑ∗2 in direction d2 vanish, we suppose that we
have achieved a best LAD-solution. Otherwise we search for the next approximation.

Such stopping criterion is analogous to the stopping criterion from Algorithm I and it is often mentioned
in literature (see e. g. [9, 10]). A more detailed geometrical analysis in Section 2.3 and illustrative examples
in Section 4 will show that it is not always implied that the point of the global minimum is attained. For
further analysis of the problem the term subdifferential of the functional F (see Section 3) is necessary.

Algorithm II.

Step 1: Input matrix X = [ξ1, . . . , ξm]T and vector z and among the rows of matrix X choose two linearly
independent rows: ξµ = (xµ, yµ)T , ξν = (xν , yν)T ;

Define matrix B =
[
xµ yµ
xν yν

]
and calculate B−1 =: [d1,d2] and a := B−1

[
zµ
zν

]
;

Step 2: Define I1 = {i ∈ I : dT1 ξi = 0} and calculate ϑ∗1 = med
i∈I\I1

(∣∣dT1 ξi
∣∣ , zi−aT ξi

dT1 ξi

)
.

If ϑ∗1 = 0, go to Step 3;
Otherwise, determine k ∈ I \ I1;
Set d := d1, ϑ

∗ = ϑ∗1 and go to Step 4;

Step 3: Define set I2 =
{
i ∈ I : dT2 ξi = 0

}
and calculate ϑ∗2 = med

i∈I\I2

(∣∣dT2 ξi
∣∣ , zi−aT ξi

dT2 ξi

)
.

If ϑ∗2 = 0, STOP;
Otherwise, determine k ∈ I \ I2;
Set d := d2, ϑ

∗ = ϑ∗2 and go to Step 4;

Step 4: Calculate a = a + ϑ∗d;

Set µ = ν, ν = k and define matrix B =
[
xµ yµ
xν yν

]
;

Step 5: Calculate B−1 =: [d1,d2] by using the previously mentioned inverse matrix and go to Step 2.

Remark 2.4. Note:
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1. According to Lemma1.1, in some cases the median of the data can be attained in every point of
some interval [yν0 , yν0+1]. In order to make assertions and calculations consequent, in that case the
left edge yν0 of the interval should be taken for the median of data.

2. The set I \ I1 in Step 2 is not empty because of at least µ ∈ I \ I1. If that is a unique element of
that set, then ϑ∗1 = 0. Similar also holds for the set I \ I2 from Step 3.

3. Matrix B from Step 4 is always nonsingular because of det B = cdT1 ξν , where c is a determinant of
the matrix B from the preceding step.

2.3 Geometrical Analysis of the Method

To every data point (xi, yi, zi) ∈ R3, i = 1, . . . ,m we correspond the line

pi = {(α, β) ∈ R2 : αxi + βyi = zi}.

Note that ξi = (xi, yi)T is a normal vector to the line pi.
Because of the fact that there always exists a best LAD-plane passing through at least two different

data points, the global minimum of the functional F is attained on the set

Ω = {(α, β) : (α, β) ∈ pi ∩ pj , i 6= j, i, j = 1, . . . ,m}.

Suppose we selected two data points Tµ and Tν . Lines pµ and pν (see Fig. 2) are assigned to these
points. Let (α0, β0) = pµ ∩ pν and a0 = (α0, β0)T .

8.6
5.

12.2
9.

20.2

25.

-1.0 -0.5 0.5 1.0 1.5 2.0

-2

-1

1

2

a0

a1

a2

Figure 2: Geometry of the iterative process

In accordance with Algorithm II, the next approximation a1 = (α1, β1)T is searched for such that from
the point a0 we start either in direction dµ perpendicular to the vector ξµ = (xµ, yµ)T or in direction
dν perpendicular to the vector ξν = (xν , yν)T , i.e. either along the line pµ or along the line pν . Thus, it
holds dTµξµ = 0 and dTν ξν = 0.

The point (α0, β0) = pµ ∩ pν , i.e. the vector a0, is obtained as a solution of system (16), and vectors
dµ,dν should be perpendicular to the rows of the matrix B. Columns of the matrix B−1 have such
property, so that they can be used as possible direction vectors. The corresponding step length ϑ∗ is
determined by solving a weighted median problem. In such way we find the point of intersection on this
line in which the functional F attains the minimal value. A significant difference of the proposed method
is reflected in this in relation to methods given in e.g. [2, 3, 14, 6, 8]. Namely, in those papers and books
it is always the first nearest point that is searched for in which decreasing of the value of functional F is
attained, whereby sometimes direction d and (−d) with a positive step length is especially considered.
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Fig. 2 shows the flow of the iterative process for searching for a best LAD-solution of the system
Xa = z, where

XT =
[

8 2 4 −2
4 −1 3 6

]
, z = (4, 1, 0, 6)T .

The sequence of approximations a0,a1, . . . and a direction of movement are denoted by black dots and blue
arrows, respectively. In addition, beside every intersection point the value of the minimizing functional
F in this intersection point is given.

3 LAD-solution of an Overdetermined System of Linear Equa-
tions

The problem of determining a best LAD-solution of an overdetermined system of linear equations Xa = z,
X ∈ Rm×n, z ∈ Rm, m ≥ n, i.e. the problem of determining a best LAD-hyperplane x 7→ aTx, on the
basis of experimental data (xi, zi), xi = (x(i)

1 , . . . , x
(i)
n )T ∈ Rn, zi ∈ R, i = 1, . . . ,m is reduced to

minimization of the convex functional F : Rn → R,

F (a) =
m∑
i=1

|ri(a)|, ri(a) = zi − aTxi, (19)

which always attains its global minimum on Rn. A subdifferential of the functional F (see e. g. [27, 28,
4, 29]) is of special importance in the analysis of this problem.

Lemma 3.1. For some a ∈ Rn a subdifferential of the functional F given by (19) is

∂F (a) =
∑
i∈I0

[−1, 1]xi −
∑
i∈I\I0

σi(a)xi, σi(a) = sign(ri(a)), (20)

where [−1, 1] = {λ ∈ R : −1 ≤ λ ≤ 1} and I0 = {i ∈ I : ri(a) = 0}.

Proof. A subdifferential of the function a 7→ |ri(a)| is given by

∂(|ri(a)|) =


−xi, ri(a) > 0

xi, ri(a) < 0
[−1, 1]xi, ri(a) = 0

=
{
− sign(ri(a))xi, ri(a) 6= 0

[−1, 1]xi, ri(a) = 0

from which there follows (20).

Definition 3.1. Let the global minimum â ∈ Rn of the functional F given by (19) be searched by the
iterative procedure of the form

ā = a + ϑp, p ∈ Rn, ϑ ∈ R.

Optimal step length ϑ∗ in direction p implies

ϑ∗ = argmin
ϑ∈R

ϕ(ϑ), ϕ(ϑ) = F (a + ϑp)− F (a).

Theorem 3.1. Let the global minimum of the functional F given by (19) be searched for by the iterative
procedure of the form ā = a + ϑp. Then the optimal step length ϑ∗ in direction p is given by

ϑ∗ = med
i∈I\I1

(∣∣pTxi
∣∣ , zi − aTxi

pTxi

)
, I1 =

{
i ∈ I : pTxi = 0

}
. (21)

10



Proof. There holds

ϕ(ϑ) = F (a + ϑp)− F (a) =
∑

i∈I\I1

∣∣zi − aTxi − pTxiϑ
∣∣− ∑

i∈I\I1

∣∣zi − aTxi
∣∣

≥
∑

i∈I\I1

∣∣pTxi
∣∣ ∣∣∣ zi−aTxi

pTxi
− ϑ∗

∣∣∣− ∑
i∈I\I1

∣∣zi − aTxi
∣∣ ,

whereby the equality holds if and only if ϑ∗ is given by (21).

Lemma 3.2. Let for some a ∈ Rn and p ∈ Rn

I0 := {i ∈ I : ri(a) = 0},
J := {i ∈ I \ I0 : pTxi 6= 0}.

Then there exists ε > 0 such that for every ϑ ∈ (−ε, ε) the following holds

F (a + ϑ∗p)− F (a) ≤ −ϑpTh(a) + |ϑ|
∑
i∈I0

|pTxi|, (22)

where h(a) :=
∑

i∈I\I0
σi(a)xi ∈ ∂F (a) and

ϑ∗ = med
i∈I0∪J

(wi, ρi) , wi = |pTxi|, i ∈ I0 ∪ J, ρi =

{
0, i ∈ I0
ri(a)
pTxi

, i ∈ J. (23)

Proof. Because of ri(a) = 0, ∀i ∈ I0, according to Theorem3.1, for every ϑ ∈ R the following holds

F (a + ϑ∗p)− F (a) =
∑
i∈I0
|pTxi||0− ϑ∗|+

∑
i∈J
|pTxi|

∣∣∣ ri(a)
pTxi

− ϑ∗
∣∣∣− ∑

i∈J
|ri(a)|

≤ |ϑ|
∑
i∈I0
|pTxi|+

∑
i∈J
|pTxi|

∣∣∣ ri(a)
pTxi

− ϑ
∣∣∣− ∑

i∈J
|ri(a)|

= |ϑ|
∑
i∈I0
|pTxi|+

∑
i∈J

(ri(a)− ϑpTxi) sign(ri(a)− ϑpTxi)−
∑
i∈J
|ri(a)|.

Note that
∑
i∈J

pTxi =
∑

i∈I\I0
pTxi and that there always exists ε > 0 such that for every ϑ ∈ (−ε, ε)

there holds
sign(ri(a)− ϑpTxi) = sign(ri(a)) = σi(a), ∀i ∈ J. (24)

Therefore

F (a + ϑ∗p)− F (a) ≤ |ϑ|
∑
i∈I0
|pTxi|+

∑
i∈J

ri(a)σi(a)− ϑ
∑

i∈I\I0
(pTxi)σi(a)−

∑
i∈J
|ri(a)|

= |ϑ|
∑
i∈I0
|pTxi|+

∑
i∈J
|ri(a)| − ϑ

∑
i∈I\I0

(pTxi)σi(a)−
∑
i∈J
|ri(a)|

= −ϑpTh(a) + |ϑ|
∑
i∈I0
|pTxi|.

Theorem 3.2. Let X ∈ Rm×n, m ≥ n, be the matrix of full column rank, z ∈ Rm, B = [xi1 , . . . ,xin ]T ∈
Rn×n, a nonsingular square submatrix of the matrix X, zB = (zi1 , . . . , zin)T , IB = {i1, . . . , in}, and let

(i) â ∈ Rn be the solution of the system Ba = zB, and B−1 = [d1, . . . ,dn],

(ii) I0 = {i ∈ I : ri(â) = 0},

11



(iii) h(â) =
∑

i∈I\I0
σi(â)xi ∈ ∂F (â).

If there exists j0 ∈ IB such that

|dTj0h(â)| > 1 +
∑

i∈I0\IB

|dTj0xi|, (25)

then

ϑ∗ = med
i∈I0∪J

(wi, ρi) 6= 0, where wi = |dTj0xi|, ρi =

{
0, i ∈ I0
ri(â)

dTj0
xi
, i ∈ J , (26)

where J = {i ∈ I \ IB : dTj0xi 6= 0}, and the following holds

F (â + ϑ∗dj0) < F (â). (27)

Proof. Let us first show that ϑ∗ 6= 0. Suppose contrary, i.e. that ϑ∗ = 0. For that purpose define an
auxiliary function ψ : R→ R,

ψ(ϑ) =
∑

i∈I0∪I1

wi|ρi − ϑ|,

which attains its global minimum for ϑ∗ = med
i∈I0∪J

(wi, ρi). Thereby ϑ∗ = 0 if and only if 0 ∈ ∂ψ(0), where

∂ψ(0) is a subdifferential of the function ψ in the point 0

∂ψ(0) =
∑
i∈I0

[−1, 1]dTj0xi −
∑
i∈J

σi(â)dTj0xi.

Since generally IB ⊆ I0 and dTj0xi = δij0 , ∀i ∈ IB , the condition mentioned will be fulfilled if and only if
∃λ0, γi ∈ [−1, 1], such that

λ0 +
∑

i∈I0\IB

γidTj0xi −
∑
i∈J

σi(â)dTj0xi = 0,

i.e. since dTj0h(â) =
∑
i∈J

σi(â)dTj0xi, if and only if

λ0 +
∑

i∈I0\IB

γidTj0xi = dTj0h(â). (28)

Note that

−1−
∑

i∈I0\IB

|dTj0xi| ≤ λ0 +
∑

i∈I0\IB

γidTj0xi ≤ 1 +
∑

i∈I0\IB

|dTj0xi|.

According to (28), this means that

|dTj0h(â)| ≤ 1 +
∑

i∈I0\IB

|dTj0xi|,

which contradicts assumption (25).
For proving (27) let us first notice that∑

i∈I0

|dTj0xi| = |d
T
j0xj0 |+

∑
i∈I0\IB

|dTj0xi| = 1 +
∑

i∈I0\IB

|dTj0xi|.
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Due to (25), according to Lemma3.2, there exists ε > 0 such that for every ϑ ∈ (−ε, ε) the following
holds
F (â + ϑ∗dj0)− F (â) ≤ −ϑdTj0h(â) + |ϑ|

∑
i∈I0 |d

T
j0

xi| ≤ −ϑdTj0h(â) + |ϑ|+ |ϑ|
∑
i∈I0\IB |d

T
j0

xi|

< −ϑdTj0h(â) + |ϑ||hTdj0 | =: A,
(29)

where ϑ∗ is given by (26). If dTj0h(â) > 0, then A = 0 for ϑ ∈ (0, ε), and if dTj0h(â) < 0, then A = 0 for
ϑ ∈ (−ε, 0).

Hence, decreasing of the value of the minimizing functional F is attained in the direction dj0 with
the step length ϑ∗ 6= 0.

Theorem 3.3. By the assumption as in Theorem3.2, let I0 = IB. Then,

I. Functional F attains its global minimum for â = B−1zB if and only if |dTj h(â)| ≤ 1 ∀j ∈ IB.

II. If there exists j0 ∈ IB such that |dTj0h(â)| > 1, then

F (â + ϑ∗dj0) < F (â),

where ϑ∗ is given by (26).

Proof. I. According to Lemma3.1, the subdifferential of the functional F in the point a ∈ Rn can be
written as

∂F (a) =
∑
i∈IB

[−1, 1]xi −
∑

i∈I\IB

σi(a)xi. (30)

The point â ∈ Rn is the point of the global minimum of the functional F if and only if 0 ∈ ∂F (â) (see
e.g. [4]). Since the matrix B is nonsingular, then from (30) it follows that â = B−1zB is the point of the
global minimum of the functional F if and only if there exists λ ∈ Rn, ‖λ‖∞ ≤ 1, such that

λ =
∑

i∈I\IB

σi(â)
(
B−1

)T
xi, (31)

i.e. if and only if

|λj | =

∣∣∣∣∣∣
∑

i∈I\IB

σi(â)dTj xi

∣∣∣∣∣∣ = |dTj h(â)| ≤ 1, ∀j ∈ IB . (32)

II. The proof of this assertion follows directly as a special case of Theorem3.2.

3.1 Algorithm for Searching for a Best LAD-solution of an Overdetermined System of Linear Equations

Analogously to Algorithm II we construct an algorithm for searching for a best LAD-solution of an overde-
termined system of linear equations Xa = z, where X ∈ Rm×n, m ≥ n, is the matrix of full column rank,
a ∈ Rn, z ∈ Rm, by minimizing the functional

F (a) =
∑
i∈I
|zi − aTxi|, I = {1, . . . ,m},

where xTi is the i-th row of the matrix X. The algorithm is constructed as an iterative process of the
form

ā = a + ϑp,

where p ∈ Rn is the direction vector, and ϑ is the step length in this direction, which are determined in
accordance with Theorem3.2, i.e. Theorem3.3.
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Remark 3.1. The approximation â of the solution is considered to be optimal if and only if 0 ∈ ∂F (â)
(see e. g. [27, 28, 4, 29]). With notations I0 = {i ∈ I : zi − âxi = 0} = {ii, . . . , il}, X0 = [xi1 , . . . ,xil ],
h(â) =

∑
i∈I\I0

σi(â)xi, the conditions mentioned in Theorem3.2 and Theorem3.3 will be fulfilled if and

only if the system
X0λ = h(â) with condition ‖λ‖∞ ≤ 1, (33)

has a solution. If specially I0 = IB , then the system from (33) becomes

BTλ = h(â),

whose solution is
λj = dTj h(â), j ∈ IB ,

so that (33) will have a solution if and only if |dTj h(â)| < 1, ∀j ∈ IB , which is in accordance with
Theorem3.3. For the example from Section 2.3 we obtain â = (0, 1)T , I0 = IB = {1, 4}, and λ =
(− 5

14 ,−
3
7 )T .

Algorithm III.

Step 0 I = {1, . . . ,m}, X = [x1, . . . ,xm]T , xi ∈ Rn, z = (z1, . . . , zm)T ∈ Rm;

Step 1: Choose n linearly independent rows in X with ordinal numbers IB = {i1, . . . , in} and set:
B = [xi1 , . . . ,xin ]T , zB = (zi1 , . . . , zin)T ,

B−1 = [d1, . . . ,dn],

a = B−1zB , I0 = {i ∈ I : zi − aTxi = 0},

h =
∑

i∈I\I0
sign(zi − aTxi)xi;

Step 2: If there exists j0 ∈ IB such that |dTj0h| > 1 +
∑
i∈I0\IB |d

T
j0

xi|, go to Step 3;
Else go to Step 5.

Step 3: Define J = {i ∈ I \ I0 : dTj0xi 6= 0} and

∀i ∈ I0 ∪ J define wi = |dTj0xi|, ρi =

{
0, i ∈ I0
zi−aTxi
dTj0

xi
, i ∈ J ,

and determine ν ∈ I0 ∪ J on which ϑ∗ = med
i∈I0∪J

(wi, ρi) is attained;

Set a = a + ϑ∗dj0 .

Step 4: Define a new matrix B, which is made from the old one by replacing the j0-th row by the ν-th
row;

Set IB = ReplacePart[IB , j0 → ν], I0 = {i ∈ I : zi − aTxi = 0},

determine a new matrix B−1 = [d1, . . . ,dn], calculate

h =
∑

i∈I\I0
sign(zi − aTxi)xi and go to Step 2.

Step 5: Define X0 = [xj0 , . . . ,xjl ]
T , where {j0, . . . , jl} = I0.

If the system X0λ = h subject to ‖λ‖∞ ≤ 1 has a solution, STOP;

Else set Ind = {} and go to Step 6.
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Step 6: Choose j0 ∈ (I0 \ Ind) \ IB , set Ind = Ind ∪ {j0} and

define B̄ = [xj0 ,xi1 , . . . ,xin ]T ;

Do QR factorization with pivoting B̄ = QR such that the position of the first row is not changed;

Define a new set of indices IB = {i1, . . . , in} (i1 is a new row).

If there exists j0 ∈ IB such that |dTj0h| > 1 +
∑
i∈I0\IB |d

T
j0

xi|, go to Step 3;

Else repeat Step 6.

Remark 3.2. The initial approximation in the algorithm is obtained by choosing a nonsingular submatrix
B ∈ Rn×n of the matrix X, which can be determined by applying QR factorization with column pivoting
(see e.g. [2, 30]), although other approaches can be found in literature as well (see e. g. [6]).

Since in every step of the algorithm the matrix B changes in only one row, calculation of the inverse
matrix B−1 may be simplified significantly also by applying QR factorization (see e. g. [2, 31, 32] (that
is also used in our algorithm) or by applying the Sherman-Morrison formula (see e. g. [14, 6].

As mentioned previously in Remark 2.4, the set J from Step 3 is not empty since at least j0 ∈ J . If j0
is a unique element of the set J , then ϑ∗ = 0. Also, matrix B from Step 4 always remains nonsingular.

Checking whether the system X0λ = h with condition ‖λ‖∞ ≤ 1 has a solution is carried out by a
Mathematica-instruction FindInstance, which is based upon the Buchberger’s algorithm and the Gröbner
system (see e. g. [33]).

4 Illustrative Examples and Numerical Experiments

The aforementioned algorithms will first be illustrated on a 10× 2 example in which different nondegen-
erate and degenerate situations appear, and which could be visually well observed.

Example 4.1. Given is the system Xa = z, X ∈ R10×2, z ∈ R10, where

XT =

[
−2 −1 0 0 1 1 1 2 2 2
−1 0 −3 −1 −2 −1 1 −3 −2 0

]
, z = (−5,−2,−9,−1,−2, 0, 4,−1, 2, 2)T .
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Figure 3: Iterative process

In accordance with Section 2.3 in Fig. 3 left, the system is shown by the lines marked with numbers
i = 1, . . . , 10. In the same figure, beside each intersection of the lines, the value of the minimizing
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functional F is denoted, whereby a yellow polygon denotes the area on which the functional F attains
its global minimum.

No Initial Initial Iteration Iteration λ∗(I0)
equations appr. 1 2

Fig. 3 {4, 10} {(1, 1), 14} {(1, 1), 14} {( 5
3
, 5

3
), 10} {−1, 1}

right {4, 6} {(1, 1), 14} {( 5
3
, 5

3
), 10} — {−1, 1}

{4, 8} {(1, 1), 14} {( 7
4
, 3

2
), 10} — {−1,−1}

Fig. 4 {3, 9} {(4, 3), 20} {( 5
2
, 3

2
), 14} {(2, 2), 10} {1, 1, 1,−1}

left {3, 5} {(4, 3), 20} {(2, 2), 10} — {1, 1, 1,−1}
{3, 8} {(4, 3), 20} {(2, 5

3
), 10} — {1,−1}

Fig. 4 {3, 10} {(1, 3), 20} {(1, 3
2
), 14} {(2, 2), 10} {1, 1, 1,−1}

right {3, 7} {(1, 3), 20} {(2, 2), 10} — {1, 1, 1,−1}
{3, 1} {(1, 3), 20} {( 5

3
, 5

3
), 10} — {−1, 1}

Table 1: Iterative process

If we choose the intersection of the lines {4, 10}, i.e. the point (1, 1), as the initial approximation, then
Algorithm I and Algorithm II cannot be run since along these lines there does not exist a smaller value of
the functional F . Algorithm III in Step 5 detects that it is not the point of the global minimum and in
this point it selects a new direction along line 6, which after that leads to a solution in one single step
(a green arrow from the point (1, 1) to the point ( 5

3 ,
5
3 )). We have a similar situation if we choose the

intersection of the lines {4, 9}, i.e. the point (2, 1), as the initial approximation. Algorithm III in Step 5
detects that it is not the point of the global minimum and in this point it selects a new direction along
line 1, which after that leads to a solution in one single step (a green arrow from the point (2, 1) to the
point ( 7

4 ,
3
2 )). These situations are shown in Fig. 3 right. Thereby green arrows also show the direction of

optimal strategy of movement from the point (1, 1), i.e. from the point (2, 1). Corresponding data can be
seen in Table 1. The column denoted by λ∗(I0) shows values of parameters λi from (33) in the optimal
point.

If we choose the intersection of the lines {3, 9}, i.e. the point (4, 3), as the initial approximation, then
as a solution all algorithms give the point (2, 2), in which the lines {2, 5, 6, 7} intersect. This situation is
shown in Fig. 4 left by blue arrows, and the corresponding flow of the algorithm is also given in Table 1.
Green arrows show directions of optimal strategy of movement from the point (4, 3).

If we choose the intersection of the lines {3, 10}, i.e. the point (1, 3), as the initial approximation,
then as a solution all algorithms give again the point (2, 2), in which the lines {2, 5, 6, 7} intersect. The
flow of Algorithm III is shown in Fig. 4 right by blue arrows, and it is also shown in Table 1. Green arrows
show directions of optimal strategy of movement from the point (1, 3).

Example 4.2. Similarly to [25], for the function f : [1, 2] → R, f(x) = ex +
{

5, x ∈ (1.2, 1.4)
0, x 6∈ (1.2, 1.4) we

will search for a best LAD-polynomial of the (n− 1)-th degree Pn−1(x) = α1 +α2x+ · · ·+αnx
n−1 on the

basis of given data (xi, zi), i = 1, . . . ,m, where

xi = 1 +
i

m
, zi = f(xi) + εi, εi ∼ N (0, σ2), σ = 0.5.

For n = 4 and m = 18 the problem is reduced to searching for a best LAD-solution of the system Xa = z,
where Xij = xj−1

i , i = 1, . . . ,m, j = 1, . . . n.
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Figure 4: Iterative process

k IB aT
k F (ak)

0 {18, 1, 10, 5} (−405.091, 852.626, −573.812, 125.323) 35.6137
1 {1, 10, 5, 17} (−426.959, 904.515, −614.345, 135.746) 31.6462
2 {1, 5, 17, 13} (−294.730, 607.759, −398.664, 85.3265) 22.4969
3 {1, 17, 13, 2} (−90.766, 191.204, −126.184, 27.625) 21.5901
4 {1, 17, 2, 11} (−93.870, 198.533, −131.779, 28.9859) 21.4035
5 {1, 17, 11, 14} (−133.619, 281.305, −187.208, 41.0065) 21.1829

Table 2: Iterative process

The flow of the iterative process and the corresponding approximate polynomials are shown in Table 2
and Fig. 5, respectively. Note that the graph of each approximate polynomial passes through 4 data
points, which is in accordance with the described theory and Algorithm III.
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Figure 5: Polynomial LAD-approximation of the function

Example 4.3. Algorithm III will also be tested on large systems. For that purpose we consider the problem
given in Example 4.2 for n = 5, 10 and m = 50, 100, 200, 500, 1000.

The number of iterations is shown in Table 3, whereby below every number of iterations a value of the
minimizing functional obtained by Algorithm III and a value of the minimizing functional obtained by the
Mathematica-module NMinimize are shown. In this way it can be seen that Algorithm III is dominant.
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m = 50 m = 100 m = 200 m = 500 m = 1000

n = 5 8 27 19 21 30
Algorithm III 48.9 107.9 212.9 536.4 1077.1
NMinimize 58.8 119.9 232.6 572.8 1151.1

n = 10 23 33 34 43 65
Algorithm III 24.7 48.1 104.6 261.8 523.6
NMinimize 90.6 122.5 236.6 563.6 1082.4

Table 3: Testing Algorithm III on large systems

5 Concluding Remarks

In this paper we consider the problem of searching for a best LAD-solution of an overdetermined system
of linear equations Xa = z, where X ∈ Rm×n, m ≥ n, is a matrix of full column rank, a ∈ Rn, and
z ∈ Rm (see e. g. [2, 4, 5, 6, 7, 8]). Motivated by an efficient method for solving the problem of estimation
of optimal parameters of a best LAD-plane (x, y) 7→ αx+βy on the basis of the given set of experimental
data (xi, yi, zi), i = 1, . . . ,m (see e. g. [9, 10, 11, 12, 13]), which can easily be geometrically visualized,
we define an iterative procedure for searching for a best LAD-solution of an overdetermined system of
linear equations. For the mentioned iterative procedure we construct an appropriate algorithm and give a
few illustrative examples for nondegenerate and degenerate situations. The examples with large systems
show efficiency of the given method, which can be easily expanded on an overdetermined system with
linear constraints. The methodology used in the paper could also be used for solving a more difficult and
numerically more demanding orthogonal distance linear regression problem (see e. g. [13]).
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